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Preface

The purpose of this study was to find the solution to
the relative equations of motion for two satellites in
close-elliptical orbits. This was done by performing a
harmonic analysis on the Floquet solution, yielding an
expression for the solution in terms of time and
eccentricity.

The solution was first verified for the circular arbit
case to confirm the accuracy of the computer code. It was
then found for the elliptical orbit case for small
eccentricities.

In finding the solution and writing my thesis, I
received invaluable support from my faculty advisor,

Dr. William Wiesel. Without his guidance this thesis would
have never been completed. Finally, I would like to thank

my wife Laura and daughter Kathryn for their understanding

during all the extra hours that I spent with this thesis at
their expense.

James M. Meintel
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The need for a closed form solution for two bodies in k]

)

close elliptical orbits is identified. Equations of motion o

are derived using Hamilton’'s equations. Floquet theory, and :
Tt »}

its applicability to this problem, is discussed. , The :

I

solution for circular orbits is derixgd in closed form and d
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numerically, using Floquet theory and harmonic analysis. p&7 o, Ny 3

,The solution for elliptical orbits is found numerically d
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first for very small eccentricities, finding the dependence Y.
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RELATIVE MOTION OF TWO SATELLITES IN CLOSE-ELLIPTICAL ORBITS

Introduction

The relative motion of satellites is a problem that has
been widely studied. The results are very important when
one wants to rendezvous or dock two vehicles. Historically,
the first use for a solution was during the Gemini program
when the first docking maneuvers were perfected for use on
the Apollo missions. A complete solution to the problem is
relatively simple for circular orbits; however, elliptical
orbits add a degree of difficulty.

Numerous authors have published the solution to the
problem of two vehicles in circular orbits, including Buning
(1984) and Kaplan (1976). Buning derives the equations of
motion for the elliptical case, but he limits solution to
the circular case. Investigations of the elliptical problem
usually amount to subtracting the position and velocity
vectors of the individual bodies. This method is limited,
however, because of a lass of significant digits during
subtraction. Lancaster (1970) formed a computational method
to calculate the relative position and velocity for
elliptical orbits; however, the results are fér single

points in time and are not a solution to the equations aof
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maotion. It also does not include out of plane motion.
Berreen and Crisp (1974) form a solution for a probe ejected
into an elliptical orbit‘from a space station in a circular
orbit, but does not address the problem of both bodies being
in elliptical orbits.

The dynamics for this problem can be solved using the
Lagrangian and the Hamiltonian as outlined in Meirovitch
(1970). The resulting equations of motion are linear and
periodic, permitting a Floquet analysis to be done. The
system eigenvectors and the particular solution to the
equations of motion can be expressed as functions of their
Fourier coefficients, as outlined by Brouwer and Clemence
(1961). The results then lead to a complete solution to the
relative equations of motion expressed as an expansion of

the eccentricity.
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¥ éﬁ% I1. Problem Description
9 ' Introduction

This chapter defines the problem, equations of motion,
and describes the theory used to analyze the equations of
o motion. The coordinate system is defined as a rotating
rectangular system with its origin centered on body A. The
g equations of motion are derived using Lagrange’s and
X Hamilton's equations. The resulting system is linear and
time-periadic, making Floquet theory applicable in solving
"y for the homogenous solution to the system. A brief

» explanation of the solution for autonomous systems is also

{. included. In addition, this chapter contains information
!‘l
ﬁj relevant to finding repeated eigenvectors, Fourier |
§;
b coefficients, and a particular solution to the equations of
D
A

motion.

"
e
1
"
£ Equations of Motion
“ The equations of motion are derived by finding the
{;
$‘ Lagrangian and then forming the Hamiltonian for the system
)
4 shown in Figure 1. The figure shows two coordinate systems.
& The first system has its origin at the center af the
:..
o gravitational field, and the polar coordinates R and 6
"
C describe the orbit of body A. The vector p is the position
;\ §§§ of body B with respect ta A.
K [ S
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2-direction is
out of page

Figure 1. Physical System and Coordinate System

Both bodies are assumed to be in two-body, unperturbed
orbits. The masses of each body are also assumed to be
negligible, thus any gravitational attraction between bodies
A and B can he ignored.

The second coordinate system is a rotating, rectangular
coordinate system. The origin of the system is at the
center of body A and follows body A along its two-body
orbital path. The x-direction is along the position vector,
R, and the y-direction is perpendicular to the x-direction
in the orbital plane. The z—direction completes the
right—-handed system. For this system, as Seen.from an

observer in body A, the coordinate directions are up,
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gﬁ& forward and left. The z-direction is the only coordinate
out of the plane of the orbit.
In order to determine the Lagrangian for the second
particle, the position and the square of the velocity vector

for body B must be found. The position of body B is:
r = (R + x) i+y i+zk (2. 1) Y
The velocity then, including the rotating terms, is:

r=((R+x -6y i+ (y+68R+8x)j+z

5
(8}
r)

thus,
r-r=R%+x* +y?6°+ 2R x -26Ry-26xy+y°
~ + R0 + 6°x2 + 2 6 x y + 2ROy + 2R 6%x + 2% (2.3
Y
The gravity potential per unit mass of body B for the K

two-body problem is:

V/m = - p/fr] = - p R+ 07+ y® o+ 2517 (2.4)
> 2 2 zz -1/2 f
= - —~_’J 1 + x + X + Y + — .
R R R? r? RZ .

Expanding the denominator and dropping the terms of order

greater than two yields

% yZ 2 ZZ
v/m = - [1— + X - X - +J (2.5)

- PR AT A o AR s Ta T APUIEET N T R A et AT T e A e N At e e
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ﬂag With the Lagrangian per unit mass
£ =T/m — V/m (2.6)

and the kinetic energy per unit mass

r o e M e 4

\ T/m = % (r - ) (2.7)
8
;- the resulting Lagrangian is:
3 1 .2 ‘ -z 1 .2 2 . . . . - - 4 -2
= - + — ¥ -_— —_— -_— -
£ 3 R 2 ¥ + 2 6y + R x 6 R vy 8 x y + ;Y
‘ - - - . . .
2 + % &°rR* + % 6%%x2 + 6 y + O Ry + 6°R x + % 22
'y
t' + H - Lz X + —’J—a- Xz - #3 Y2 - “3 Zz (2.8)
R R R 2R 2R
¢
Y
4 The Hamiltonian for a system is found from the
4
!
p Eb following equation:
‘ .
i R
t = -
: H=fp g ~- % (2.9)

‘ were the q's are the coordinates as defined before, and the

p’'s are the conjugate momenta which can be found by

! = 9 (2.10)
» v dq,
4
N The resulting momenta are
[/
D CL
' p,=x+R -6y (2.11)
i' py=9+éx+éR (2.12)
‘ 3
p =2 (2.13)
¢ z
)
'
b
W
3 6

%t

’
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qga After solving the above equations for the ixs and

substituting into Eq (2.9), the resulting Hamiltonian is

1 2 1 2 1 2 o M M 2
. H=zp *+pP +zp, - —+— q - — q

2 x 2 b4 2 2z R Rz x Ra x

1 M 2 1 u 2 - -

+ - —— - — +

st qy+st qz Rpx epqu

—éqx py—épr (2.14)

PR

To find Hamilton' 's equations of motion for the p's and gq’'s

; the following relationships must be used:

(2.15)

(2.16)

— o e me o

‘ Substituting the Hamiltonian into these two equations yields

.

the following system of equations which describe the motion

‘ of body B with respect to body A.

; - Ch g -

; q,=p, ~ R+ 8 q (2.17)

: h = -8 - 6 R (2.18)
q, =P, q,

; Q = p, (2.20)

K

f and

,= ,5=-_“2.+_qu +6p (2.21)

v x R rRY Y

1)

' , = - M g - o o

: py e (:|y e P, (2.22)

BB

)

)

)

X 7
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Constant Coefficient Systems
For body A in a circular orbit, Eq (2.24) can be
written in the form é = A x + f where A is & constant
matrix, f is a constant vector, and x is a time dependent
vectar. As with scalar differential equations, x(t) can be
solved by finding the particular and homaogencus solutions
%35 independently and adding the solution
8
:’\‘:'\.‘\»‘I OO ] !'-.‘.'l‘,'l'\u N !‘ws A "‘('\‘ ) "’ 3 :'r'.\"'\'-\""-f':-.{": -": - NRSRRAA LY -'.N.::_::‘:';":\;i‘;:j

H_q (2.23)

Putting these equations into matrix form yields the

following set of equations.

r b [ h r Y r b
Q O 1 e 0o o0 o q, R
2K : -H
P, R® 0 o e 0] o) P, R2
q - 0 0 1 0 o q -erR| (2.24)
{ Y y = _H { Y  + y
0-8 s 0O ©0 O o
Py R Py
Q, 0O 0 0 O 2 1 a, 0
p O 0 0O O Ta o p o}
L =z J L R o L z s L 4

For the case in which body A is in a circular orbit,
the above reduces to a linear, constant coefficient system.
However, if body A is in an elliptical orbit, R and 6 are
time dependent. Nevertheless, both R and @ are periodic;
therefore the entire Hamiltonian described above is a

linear, time-periodic system.

'.{:.-:."

J P A
e Wy
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The easiest of the two solutions is to find ip

is assumed to be a constant vector then ﬁp =0 .

Eq (2.24) becomes
o=ax +f

and §p is easily obtained.

On the other hand, L is not so easy to find.

homogenous differential equation is

d =
atisiy) = /%,

rearranging

dx

~h - A dt

x ~

~h
integrating both sides yields

In (ih) = Q t + c

taking the exponent of both sides

X, = exp(At + c) = ¢ exp(ﬁt)

where c is a constant vector related to the initial

conditions.

Al though this is not a mathematically rigorous

argument,

(2.25)

If x
~p

Thus

(2.26)

The

it does show how the solution is obtained.

(2.27)

(2.28)

(2.29)

(2.30)

The

SN

W



expression exp(At) is similar to the scalar exponential in

that the expansion is
exp(At) =1 + At + — (A ) + _— (A t)" + --- (2.3%)

A, however can be put in the form

A=FJF" (2.32)

~

where F is the matrix of eigenvectors of A in column form,
and J is a diagonal matrix of the eigenvalues of A. J is
said to be in Jordan naormal form.

If it is noted that

-1

(FJEH" = (EJF (2.33)

then

exp(At) = L + F LJt1 F* + F (3, (071 F* + F (o ®1 £7°

= F exp(Jt) F* (2.34)

setting Q(t) = E exp (Jt) 5-1 s the total solution to the

differential equations of motion is

x(t) = @it) ¢ + (2.35)

b

~p
Therefore, finding the solution to the equations of

motion for the case where body A is in a circular orbit can

be done by finding the eigenvalues and eigenvectors and

solving Eq (2.26).

10
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®{t) = 2 (t,0) c(t ) (2.37)
~ -~ (o]
o
el
11
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Floquet Analysis

The solution for a constant coefficient system has been
well studied and yields relatively simple results. The
system for this problem, however, is one of time-periodic
coefficients. The solution for this type of problem was
discovered by Floquet in the latter part of the 1800°s. The
most common uses for Floquet theory is to find the stability
of time-periodic systems in celestial dynamics. Few
studies, however, deal with finding a solution to the
equations of motion.

If we start with the system of time-periadic

differential equations
X = At) x (2.36)

where X is the state vector, & is the time derivative of the
state vector, A(t) is a periodic matrix with period T. The
numerical solution to this problem is only slightly more
difficult than the one for constant coefficients in A;
however, the process is different so a discussion of the
procedure is included.

Since we have a linear system, its solution can be

described as

{

t

{

AT e e
NN " N



d@% where the state transition matrix, ¢, has the initial
[

conditions

@ (£,0) = A(t) ¢ (t,0) (2.38)

¢ (0,0 I (2.39)

where I is the identity matrix.
Floquet theory shows that ¢ can be factored into two

matrices F and J, such that

¢ (£,0) = F (t) exp(Jt) F (0) (2.40)

The matrix J is a constant matrix most conveniently put in
Jordan normal form. The diagonal entries of J are the
(EQ Poincaré exponents which are related to the system
» eigenvalues. The matrix F is a time periodic matrix with
the same period, T, as the original system.

For the constant coefficient system, F would just be
the eigenvectors of A. The only difference between the
constant coefficient system and the periodic system is that
ﬁ is periodic in the latter case. Therefore, solving the
Floquet problem requires finding the constant matrix g and
the periodic matrix F over a single period.

The first step in the Floquet analysis is to find
Q(T,O). This is called the monodromy matrix. The monodromy

matrix is usually found by numerically integrating

@ @(t,0) = A(L) -g(t,0) (2.41)
l““'
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R @%@» over one period. Having ¢(T,0) and knowing F(T) = F(0)

results in
“ @(T,0) = F(O) exp(Jt) F (0 (2.42)
I

which can be written as

exp(Jt) = F '(0) ¢(T,0) F(O) (2.43)

This shows that F(0) is the matrix of eigenvectors for

e $(T,0).

'y Also, if Ai are the eigenvalues of the matrix ¢(T,0).
The Poincaré exponents, @ 4 are related to the eigenvalues

M by the following relationship

@ A = exploT) (2.44)

Where the w are the diagonal elements of J, or

- r T

A Ly X

%>
N

w = (1/7) 1In (kt) (2.435)

[\

-’
-

The stability information for the system is now

present. I¥f any of the Poincaré exponents have positive

ot

real parts, the system is unstable. Since the stability

information is all that is usually needed, this is where

P I
=

= .

most Floquet analyses stop. For this study, however, the

solution to the equations of motion are desired; therefore,
the analysis must continue.

In order to find the complete solution, F(t) must be

[ A

» Eg@ found. Since it is periodic, F(t) is only needed over the

AT A (] . ke "-p-‘\ Y Y N\ Y \ﬁ\\»" \\»~\‘-"\'.'- -u..- ._:,'-_- . s r . Pl B IR I )
TR T R N R O A e m{h&{kﬁm‘;&ﬁ.{&fn.(\f;\' A R R T O .{‘\-{“.}h’;"z’c\ﬁ
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first period. By substituting Eq (2.38) into Eq (2.37) and

rearranging
i(t) = At) F(t) - F(t)y J (2.46)

where the initial conditions for the equation is just the
matrix of eigenvectors. So by integrating this equation
over one period the total solution can be found.

The first problem that arises is that F(t) and J_can be
complex, making any real analysis quite difficult. They
can, however, be arranged such that both are completely
real. F should be arranged in column vectors, f{, if the
eigenvector is completely real, then fi will simply be the
eigenvector. On the other hand, if there is a pair of
complex eigenvectors (they always appear in conjugate

pairs), then the columns will be ‘t and ft' .

m

real

The matrix J will no longer be in Jordan normal form,
but will be in block diagonal form. Real ux's will remain
the diagonal elements of 1, but the complex pairs of o ;s
will be appear in the following diagonal blocks:

Re (w) Imdw)
(2.47)
—Im(w) Re (w)
The matrix exp(it) is then replace by the diagonal

entries exp(ukt) for the real w and the diagonal blocks

14
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@ cc:s(Im(w_L)t) —sin(Im(wt)t)

exp (e t) (2.48)

sin(Im(th) cos(Im(th)

for complex conjugate pairs.

In this problem, it will also be necessary to find

Ef‘(t) over one period. F(t) is always invertable; however,

an easier method for finding E-ift) exists. If the identity

FF™® = 1 is differentiated with respect to time and

subsituted from Eq (2.46), the result is

Fh) = - Fh) am) + 3 g"(t) (2.49)

~

Since the problem that is being dealt with is periadic,
there will be a pair of repeated eigenvectors along the
iE% velocity vector of the two body orbit (Wiesel, 1981). Since
the columns of F must be independent, another eigenvector
must be found. 1f & is the vector of p,L and q. of the two

body arbit, then the repeated eigenvector, {1wi11 be

g = = ' (2.50)

;e = — (2.31)

where E is the energy of the orbit. S
Now that F(0) and J can be formed, Eq (2.46) can now be
integrated. By using harmonic analysis, as outlined in

839 Brouwer and Clemence, one can find a closed form expression

PG S
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for the elements of F. Since F is periodic it can be

expressed as

F(i,j) = !c +ccost +ccos 2t + -+ + 1 ccos nt
2 o 1 2 2 n
+ s‘sin t + szsin 2t + - - + shsin nt (2.52)
where
. 2ot
c =: 2 F(jo) cos kija, kK = 0,1,2, - ,n (2.53)
N J:O
, 2ot
s =1 z Flio) sin kia, K = 0,1,2,--,n — 1 (2.58)
n &
and
a = 2n/2n (2.399)

Therefore, numerically finding n values of ﬁ, spaced over
equal intervals of time, yields a complete solution for F.

Therefore, a complete homogenous solution has been found.

Particular Solution

In order to find the complete solution to the problem a
particular solution, in addition the homogenous solution,

must be found. Eq (2.24) is in the form
x = A x + £(t) (2.56)

Now, introducing the modal variables, y, as

¥ "."‘-:,_' S “._'.\ .}..-'-_ K
» P G R Py L;A.‘(‘A_'tsiﬁs'ﬁs.'

'«. AR NS
P ) o



- e e e

e - -

o

3
i.

Y = E"(t) % (2.57)

then

LI

y = F') x + Fhe) x (2.58)
substituting Eq (2.57) into EqQ(2.58) yields
y =F Hramx + JE N + EHAMx + F (D £(1) (2.59)

Substituting Eq (2.57) into Eq (2.39) and simplifying

results in
y =d y + EHe) £ (2.60)

The term, ﬁqlt) f(t), is periodic; therefore, it can be
integrated over one periaod to find the Fourier coefficients
as was shown for F(t). The solution for y can then be
easily integrated by hand since it is just a series of sines

and cosines.

Conclusion

The geometry of the problem and the equations have been
shown. A brief overview of the methodology for solving the
equations of motion was then presented. The following
chapters will utilize the procedures discussed in order to
find the solution to the problem of relative motion of two

satellites in neighboring elliptical orbits.
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III. CircularASolution

Introduction

This chapter will deal exclusively with the solution
for the problem with body A being in a circular orbit. It
will first be solved as an autonomous system, and then the
results will be compared with the solution obtained by using

a Floquet analysis as outlined in the previous chapter.

Autonomous Soclution

The elements of the A matrix, R, and 6, for the
circular solution will all be constant. Using canonical
variables, R, u, and & will all be identically equal to one.

The resulting equations of motion will be

[ 0 1 1 0 O O ] 0 )
2 0 0 1 0 © -1
5 = -1 0 0 1 0 O 5+ -1 3. 1)
0-1-1 0 0 O 0
0O 0 0 0 O 1 0
| 0 0 0 0-1 O | [ 0

The first step in finding the exact solution to the
circular case is tao find the homogenous solution for
Eq (3.1). As shown in the previous chapter, this is done by

finding the eigenvalues and eigenvectors of the A matrix.
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A The eigenvalues are found by the equation
Sy
LMy
det(x I - A) =0 (3.2)
The fesulting characteristic equation is
t)
: A+ A% =0 (3.3)
.l
0
"
\ Therefore, the eigenvalues are
0
"
, A = 0 (3.4)
5 1,2
l
f and
)
o
W A = + i (3.9
3,4 -
"
s
ke A = + i (3.6)
) 5,6 -
-
; éﬁ? The eigenvectors are then found by the equation
3
e (NI-A) [ = O (3.7)
N P e i
0
*
" For x‘ the resulting eigenvector is
Cx
4
& g, = ¢0, 1, -1, 0, O, o’ (3.8)
K
7
However, there is no independent eigenvector cooresponding
D)
3 to kz. This vector, termed the generalized vector, can by
: found using the expression (Reid 1983)
a M -x1 ge = ;1 (3.9
k)
Y
4y
%
. W
DT
=
¢
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éﬁa This yields

§q=

-
- -

"o A s ws taA
- -

The other four

2 1 T
( ;, 1, _1, - ;, 0, 0)

(3.10)

eigenvectors occur in complex conjugate

pairs. As in the Floquet analysis outlined in chapter 2,

-~
P
-~ -

> -
)

cosines.

The pairs of

-
P e Ko

the eigenvectors can be broken up into their real and

eigenvectors are

imaginary parts, and J can be put into blocks of sines and

1 1
(g=¢51, -5 1, -1, 0,0 (3.11)
k. {, = ¢0,0,0,0,1, i)’ (3.12)
[}
)
y
g O Therefore, the following can be written
fc
W -
¢ 0O 2/3 0 -1/2 0 0]
§;
h 1 1 -1/2 0 0 0
C‘ - _
. F = t -t 1 o o O (3.13)
, 0-1/3 0 1/2 0 O
D
: 0] 0] (o) o 1 0
' | 0o o o 0 o 1 |
]
. -z 2 1 -3 0 0]
0 3 o o 3 o o
)
: £ = o 2 2 o o o (3. 14)
® 2 o0 o a4 o o
. o o o 0 1 o
| o o o o o 1 |
1
li . —
K iﬁ@
A
3
[
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1 t
(0] 1
exp(gﬁ) = 0 0
Q 0
0 0
| o o
Multiplying matrices
e 2/3
1 t + 1
Fexpgt) = |77 F
(0] -1/3
(0]
0

and

g(t,0) =
[ 2-cos t sin t
3t-sin t 2-cas t
-3t+2sin t -2+2cos t
—1+4caos t -sin t
0 (o)
| 0 0

So the above matrix is the Q matrix

O Q 4]
o 0 o
cos t sin t (o)
-sin t cos t Q
0 Q cos t
o 8] -sin t
% sin t - % cos
- % cos t - % sin
cos t sin
- — sin - — cos
0 0
o} 0

F exp(Jt) F' =

sin t 2-2cos
l1-cos t 3t-2sin
-1+2cos t -3t+4sin
-sin t —-1+2cos

0 0

0] Q

the homogenous set of equations.

Finding the particular solution requires finding the

solution to the following matrix

A, wp C AN Ty
eOR A an

equations

P TR T iy R S NI L by AR R R A N R P L R R '-.i
K a X X g M) M&‘Aml{L{A{L{J ;.1 PR IR T TRV VLN Y . AP L‘"L..' A

0
Q

sin t

cos t

o)

cos

-si

oot

n

c o O O

cas

-s1

-« "
-

n

and is the solution to

(3.15)

0
O
(9}
8]

sin t

cos tj

(3.16)

S O O

O

sin t

cos td

(3.17)

RTINS N



@ [ 0 1 1 0 0 0 ] (0 )
2 0 0 1 0 o 1
o991 oo x =4 b1 (3.18)
0-1-1 0 0 O P 0
O 0 0 O 0 1 0
| 0 0 0 0 -1 0 | . O J
Resulting in
T
x = ¢(0, 1, -1, 1, O, O) (3.19)
~p 7  J v L k]
Putting the homogeneous and particular solutions
tagether yields an equation in the following form.
x(t) = @(t,t ) c(t ) + x (3.20)

.

Therefore, the next step in finding the total solution is to
‘?5 find the constant vector E(to)‘ Evaluating Eq (3.20) at

time equal to zero results in
x(0) = ¢(0,0) c(0) + x (3.21)
~ ~ 'Np
Since ¢(0,0) is the identity matrix
c(0) = x{(0) — xn (3.22)
~ ~ ~p

Recalling Eqs (2.11), (2.12) and (2.13) for body A in a

circular orbit yields the following

Wy e N - A R R R P T Y A A PR A AL A AT I NN
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y (3.23)

N: N X< X
+
X
+
[y

Evaluating for time equal to zero and substituting into

Eq (3.22) yields.

c(o) = | Yo ! (3.24)

Multiplying out Eq (3.20) with the given results for
¢(t,00, c(0), and §p directly yield the following equations
for the position of body B with respect to A in the original

coordinate system referred to in Figure 1.

x(t) =4 x_ - (3 x +2y)cost+x_ sint+2y (3.29
(o] o] o] o) o]
y(t) = ( 6 x_ + 4y ) sint + 2 x_ cos t
(o] (o] [}
- + 3y -2 x .2
« 6 Xo 3 yo) t ° + Yo (3.26)
z(t) = 2 cos t + z_ sin t (3.27)
[ o] o .
23
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(37

The equations of motion that have been derived do not

directly give equations for the velocities, or dot terms.
Eq (3.20) gives the equations for the momenta terms, and the
velocity equations can then be found. The equations for the

momenta are

p (t) = x(t) — y(t)

= - (3 x +2vy)sint - x cos t
o] (o] o)

+ (6 %5 + 3 Yo )t + 2 X, T (3.28)

p (t) =y + x + 1

b 4
=-x_sint + (3 x +2vy ) cos t
o o] o
-2x -y +1 (3.29)
o] o
p(t) =z(t) = —z sint + z cos t (3.30)
z (o] o)

Therefore, the solutions for the velocity components are

»(t) = 3 x + 2y + x cos t (3.31)
o] (o] o]

y(t) = — 2% sin t + (bx + 4y ) cos t - 6x - 3y (3.32)
[o] [} (o] [} o)

z(t) = -z sin t + z_ cos t (3.33)
(o] (o]

These equations are the same as derived in Kaplan.
Kaplan, however, derived the equations using Newtonian
mechanics, whereas the derivation here is using Hamilton's

equations.
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Circular Solution Using Floguet Theory

. -
-

E The exact soclution derived above should yield the same

;: results as Floquet theory. Briefly, Floquet theory consists
x of the fcllowing steps

s 1. The ¢ matrix will be integrated over one period.

s 2. The F and J matrices will be found at time equal to
ﬁ zero using the eigenvectors and Poincaré exponents
B' evaluated from ¢ at ane period.

!

i; 3. F will be integrated over one orbit. Since it is
S periodic, the results are valid for all time.

A 4. The fourier coefficients for the individual terms

‘ in F are found.

; é%% S. The solution for the ¢ matrix for all time is now
g available and the solution can be found using the
%3 initial conditions the same as was done for the

Hamiltonian derivation.
Integrating ¢ over one period yields the following

matrix

[ 1.000000 0.000000 0.000000 0.000000 0.000000 0.000Q0000 ]
18.8495336 1.000000 0.000000 18.8495546 0.000000 0.000000
-18.849536 0.000000 1.000000-18.849356 0.000000 0.000000
0.000000 0.000000 0.000000 1.000000 0.000000 0.000000
{ 0.000000 0.000000 0.000000 0,.000000 1.000000 0O.000000
g g 0.000000 0.000000 0O,000000 O0.000000 0.000000 1.000000 )
I.
~.,
—
" e
E; el
i
i
! 25
\
5
W
R R S T A N N S S L T S 2 4 2




---_
P o of A

- -

LOL AL

.

Finding the eigenvalues for this matrix is not
extremely difficult, K—a are all one. Finding the
appropriate eigenvectors is not quite so easy. The first
problem that arises is the that IMSL subroutine eigrf can
not handle the problem. Due to the six repeated
eigenvalues, IMSL only finds three independent eigenvectors.
One is a vector along the velocity of body A as expected,

and the other two that it finds are for the out of plane

motion. They are

(0, t, -1, 0, 0, O)T
T
( 0, 0, 0, O, 1, O)

( 0, 0, 0, 0, 0, 1)7

It has already been shown that one of the eigenvectors

will be

(3.34)

al a
ﬂzx

where E is the energy of the orbit and X is the position
vector of body A with respect the center of the Earth

evaluated at time equal to zero or any integer multiple of

the period. The vector {, in the coordinates being used, is
X = ( Ro, o, O, Voo o, O) (3.35)

where v is the linear velocity of body A. Therefore, the

eigenvector will be
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0 dR dv

o
g = ( dE ' o, O,

Y
&

o]

g 0 O (3.36)

w7l
e

"W First R° and vo must be found as a function of E.

()
L]
% Starting with
l:.
'l.
E= 2/ 2 - (u/sRD (3.35)
" o o
D
"
' and
L]
"
v =(pu /s RV (3.36)
" o o
e
"
{ Substituting Eq (3.36) into Eq (3.35) yields
.0
= - _ﬁ
. Ro 5€ (3.37)
N
¥
K also
§ o
) v, = (- 28 (3.38)
K)
(S .
S
. Taking the derivative of Eqs (3.37) and (3.38) with respect
o}
x‘
.. to E yields the eigenvector
A
B -
M g, = ¢ H o L o0,0,-C-282"% o, OF (3.39)
ol 2e2
H
§,
b
s
. Since canonical units are being used, a =1 sy M =1 "
;3 and E = -~-1/2 . Therefore,
1'
' £, = ¢2, 0,0, -1, 0, n’ (3.40)
"
’Q' Four of the eigenvectors have now been found; however,
N
L
jﬂ two more are still needed. Finding them by hand turns out
o
- to be fairly simple due to the number of zeros present in ¢.
~
:." \"_ﬁ
‘0
[
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0O 2 0 1 0 O ]
1 01 0 O O
y —
F(o) = 1 0 0 0 0 O
0O-1 0-1 O O
o 0 0 0 1 O
L 0O 0 0 0 0 1 |
also
[ O 0 -1/3 0 (4} 0
2, 1 0 0o 1 o) o
&" F'0) = o 1 1 o o o
- -1 0 ©0 -2 o0 O
o o o o 1 o
Y o o 0o o 1]

Since all the eigenvalues are equal to one, all the

Poincaré exponents are zero. This means that the J matrix

will be zero, except an off diagonal one due to the

qgeneralized eigenvectaor ({c). Therefore,

{,= (0,1, 0,00, n’ (3.41)

£, = ¢1, 0,0, -1, 0, o7 (3.42)

Putting all the eigenvectors together gives the following

(3.43)

(3.44)

- m s .
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o 1 0 O 0O o©
O 0 0 0 o0 0o
g=| ¢ ¢ 0% 000 (3.45)
O 0 0 0 0 0o
O 0 0O 0 O o
| 0 0 0 O o o |
and
f 1t 0 0 o 0
g {1 0 O O <«
exp(Jt) = ¢ 06 1 0 0 0 (3.46)
O 0 0 1 0 0O
o o0 0 0 1 O
| 0 0 0 0o 0 1 |
" Now everything has been found that is needed to find
'i.

F(t). With F(O) as the initial conditions, F was integrated
over one orbit. It turned out, however, that the chosen
eigenvectors were not periodic. Instead of returning to

their original values, the following matrix resulted

o 2 o 1 0 o
1 12,6 1 0 0 o
Fey = | 71 12600 ° ° 0 (3.47)
o -1 o -1 0 o
0 o o o 1 o
| o o o o 0 1

Since F(0) = F(T), this is not a periodic combination

of eigenvectors. However, due to the fact that all the

@ﬁ} Poincaré exponents are zero, any linear combination of the
~
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" Q§§ eigenvectors is still an eigenvector. Therefore, some

linear combination of the first two eigenvectors must be

found to make the set of eigenvectors a periodic one.
Evaluating the time derivative of F at zero results in

the following

O 0o t 0 0o o ]
o 2 0o 1 0 O
LP
F(0) = A F(O) ~ F(O) J = ©-2 0-2 0 0 (3.48)
O o0-1 O 0 0O
o 0 0o 0o 0 1
, | 0 0 0 0-1 o |
é What was done to solve this problem was to find a set
h
f of eigenvectors that make the time derivatives of the second
, -
! ﬁ* and third row of the second column equal to zero at time
- equal to zero.
by
: The first thing that was attempted was to add a
multiple of {1 to gz. If
2 02 0 1 0 0 ]
h 1 a 1 O O O
U
Fo) = | 1™ 0 0 0 0O (3.50)
‘i 0-1 0-1 0 O
) O 0 0o 0o 1 O
y | 0 o o 0 o0 1 |
then
X
0
»
;B
)
)
K
4
N
4 30

L. - ATy -f. NSRRI L LT LR LT AL AN AN \.3‘.-. LT N O L S ¥ R AR
WAL IS LN Ay L LG AR A TN RN h};&t‘&&hﬁn'&\&&\‘:-l\_\.\}.‘\nﬁ.\'}.‘),'.\'f.\:f.\\ O O,




O 0 1 0 0O 0] O 0 0 0 O 0
0O 3 0 1 O O I T B R I
: O 0-1 0 0 O 0O 0 0 O O O
. O 0 0 0 0 1 0O 0O 0 0 0 O
| 0 0 0 0 -1 O ] |0 0 0 0 0 O |
(3.51)

Adding the two matrices in this manner did not have the
desired affect. The next thing that was tried was to just

have a multiple of {1. The eigenvalue matrix at zero will

) be
i 2 01 0 0 ]
: 01 0 0 O
D)
e;:.z Foy = | @ % % 000 (3.52)
0 0-1 0-1 0 O
0 00 01 0
| 0 0 0 0 0 1 |
and
0 0 1 00 0] [0 0 0 0 0 O]
© 3 0ot 0 o 0O a 0 0 0 0
AE@ -Fg= |03 0200 fo-ao0 0 o0 o0
©o 0-1 0 0 0 0 ©o 0 0o o
o 0 0 0 o0 1 © 0 0 0 0 O
o 0 0 0-1 0] |o 0o 0 o o o]
(3.5:3)

It is easy to see that if a =3 , then i(O) will be zero

in the desired positions.
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A

The eigenvector matrix

&

T 0 2 0 1 0 0 ]
3 01 0 0 0
Foy = | 5 ¢ ¢ @ o0 (3.54)
0-1 0-1 0 0
0 00 0 1 0
| 0 0 0 0 0 1 |
and
0 0 0-1/3 0 0 ]
1 o o o o
Fr o =) ¢ * 1 ©° 9o 0 (3.55)
-1 0o 0 -2 0o o
©o o 0 o t o
| o0 0o 0 o o 1 |

was integrated around>one orbit and was periodic.

The next step was to find the Fourier coefficients as
described in Chapter 2. The results of the harmonic
analysis showed that each element of the F matrix could then

be expressed as a function of time in the following manner

[ O 2 sin t cos t Q 0
3 QO 2-cos t sin t (0] o]
E(t) - -3 0 -242cos t —-2sin t (0] 0] (3.54)
0 -1 -sin t -cos t 0 Q
0 o 0 0] cos t sin t
| 10) O 4] Q -sin t cos t_
32
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AFB Note that these numbers are really accurate to ten
significant digits. The trailing zeros were left off to
make the matrices easier to read.

[ 1 t 0 Q 0 0 T
Q 1 Q 0 0
exp (Jt) = ¢ o 1 o o 0 (3.57)
(o) Q Q 1 6] ]
Q V) 0 o] 1 Q
| © 0 Q 0 0 1 ]
Therefore, to find g(t)
[ 2 sin t cos t 0 y) 1
3 3t 2-cos t sin t (0] 0
F(t) exp (Jt) = -3 -3t -2+2cos t —2sin t 0] o]
i'im 0 -1 -sin t —-cos t 0 Q
’ o] o o ¢ cas t sin t
L o} Q (o] Q -sin t cos t]
(3.58)
Recalling that
O o -1/3 0 o 0 ]
1 e o] 1 0 o
F ' = ¢c 1t 1 o0 o © (3.59)
-1 0 o -2 0 0
o] 0 0 o] 1 (o)
| O 0 0 o 0 1]
o
e
33
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1

@(t,0) = F(t) exp(Jt) F "(0) =
i 2-cos t sin t sin t 2-2cos t 0 0
3t-sin t 2-cos t 1-cos t 3t-2sin t o) Q
-3t+2sin t -2+2cos t -1+2cos t -3t+4sin t 9] Q
—1l+cos t -sin t -sin t ~1+2cos t Q 9]
o) Q ] o cos t sin t
| o 0 (4] 0 -sin t cos t]
(3.60)

As expected, this ¢(t,0) is identical (within ten
significant digits) to the one for the exact soclution. From
here on the total solution can be found from Eq (3.20) in
the same manner as the exact solution. Due to redundancy
this will not be shown. However, the total solution will
result in the same solution because ¢(t,0) is the same for

bath approaches.

Conclusion

The salution to the equations of motion for the
circular case are not new. The main purpose for finding
this solution was to help verify the computer programs that
were used. Since the two solutions are identical, it shows

that the numerical approach that was used was correct for

the case of a circular orbit.

R T i Rl LA T P T T WS JE
o A A A A e e A

1
NN NS

N
Wt S



g$§ IV. Elliptical Solution

Introduction

The procedure for finding a numerical solution to the
elliptical problem is identical to finding the numerical
solution for the circular case. The goal, however, is to
find the relative motion solution as a function of
eccentricity. This will be done by finding the solution for
slightly eccentric orbits. For very small eccentricities
(ie. e = 1077 ) only the linear terms of e will appear.

p After finding the dependence on e, larger values for the

eccentricities will be used to find the equations’

e.; dependence on e? and &°.

Homogenous Solution to the Eguations of Motion

Q(T;O) is found in the same manner as for the circular

Lol gk JuE -x' =

case. é = A ¢ is numerically integrated over one period.

For all eccentricities, ¢(7,0) appears in the following form

e e e A T TN T T N



i 1 0 0 o (o]
A 1 0O B O O
."5
¢
5 p(T,00 = | & ¢ t D 00 (4. 1)
oy O 0 0 t 0 0o
e © 0 0 0 1 O
, 0 0 0 0o 0 1 |
ot -
ol
"
a. Where A,B,C,D are some value.
)
s The eigenvalues, as in the circular case, are all of
ﬁ magnitude equal to one; therefore, all of the Poincaré
\)
W exponents are zero.

As with the circular case, IMSL cannot find distinct

eigenvectors to the matrix; however, it is not too difficult

NalTaee

to find the eigenvectors by hand due to the abundance of

-
o
Pt
»
N
"
]

»
zeros in the matrix.

X
» [ 0 0 0 0 0 O
) A O 0 B 0 O
t
ai1-m=| 0 0 DoOoO 4.2)
x 0O 0 0 0 O O
N | 0 0 0 0 0o 0O |
X Four of the eigenvectors are easy to determine. They are
W3
A -
1'0 — T
N {,= ¢0, 1, 0,0, 0, O (4.3)
1
" { =¢1, 0, 0, -A/B, 0, O)F (4.4)
W 4
N T .
;& {,=¢0,0,0, 0,1, 0 (4.5)
N . {(,= (0,0,0,0,0 DT (4.6).
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and, as shown in Chapter 2, there is a repeated eigenvector

and its corresponding extended eigenvector. Recalling

dX

~

T (4.7)

L

and
{2 T (4.8)

the last two eigenvectors can be found. The repeated vector

will be
£, ¢ O, p/Rz s Vgr 0y 0, 0 (4.9)

Where the zero subscript denotes time equal to zero. Using

canonical units

p/R® = 1/7(1-e)? (4.10)
From Kaplan (1976)
e = (Rovz / w -1 (4.11)
Which leads to
v, = LG/R ) (e + 1)1*7? (4.12)
thus
v, = [le + 1)/(e - 1) 322 (4.13)
37
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Now only the second eigenvector needs to be found.

Recalling Eq (3.33)

E= (/2 - (u/R)D (4.14)
o) s

Substituting for Vo and solving for Ro results in

R, = (e - 1)/2€ (4.15)
thus
dR_/dE = —l;l{;- (4.16)
2 €

However, for canonical units the semimajor axis, a, will be

equal to one, and E = -1/2 . Thus,

dRoldE =2 (1 — e) 4.17)

Now, in order to find dvoldE, start with

v, = /R ) (e + 1)1*72 (4.18)

Using the chain rule

dv_/dE = (&v_/6R ) (SR _/dE)
o o o o

=~ (1/48) [(1 + e)/R:J"z

simplifying,

(1 - e /7 262 (4.19)

dv /dE = - [(1 + @) /(1 - e)1'? (4.20)
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was done to the matrix above and,

ﬁ(O) will be

i it was not periodic.

) o
‘EO

. will make this happen.

| eigenvector is multiplied by three as before,

F(o) =

h,’ h LV | b P A
LI LA AN TR LY () W,

"D,
’

R 1 v
0, N N, N0 Yy

»

of the first eigenvalue.

Nevertheless,

ca N

However ,

L

AJ
)

aJ

o

o 1 0
1 o 0
0 0 0
0] -A/B 0
O o 1
o 0 0

o 1 O
1 o o
o o 0
o -A/B o
0 o 1
o o o

v

Nt R M N W
-.** O Tn o

j&g Since the eigenvectors have all been found,

the matrix

if the first

then

0]

I W
-

W

DR RO ¥ e ST

Wy §

The next step is to integrate E over one period.

t]

(4.21)

This

as in the circular case,
The method for making F periodic for

the circular solution was to make the second column of the

(4.22)

second and third rows of ﬁ equal to zero by using a multiple

there is no constant that

‘J:a‘:

. \#\*

-
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F(3,2) = 0 (4.23)
and
F(2,2) = — e/(1 - @2 (4.38)
For the case where e =0 , Eq (4.34) reduces to zero.

This method was tried and resulted in a periodic
function for F(t). Fifty values of F were saved along equal

increments of time during one period and the Fourier

ar
o a e

coefficients were found as discussed in Chapter 2.

i
J
H

v.-‘.‘-

Table 4.1 lists the eccentricities and the calculated
values for the Fourier coefficients of the first column of

the first row of g(t).

é%h Table 4.1
Fourier coefficients for F(1,1)
e ) S s
1 . 2 3

. 0000001 -. 000000300 * *
. 0000010 -.000003000 * *
. 0000100 -. 000030000 * *
. 0001000 - . 000300000 * *
. 0005000 -. 001500000 |-. 000000750 *
. 0008000 -.002399999 | -. 000001920 | -. 000000002
. 0010000 -.002999999 | —. 000003000 | —. 000000003
- 0030000 -.014999859 | —.000074999 | —. 000000422
- 0080000 -.023999424 |-.000191992 |-.000001728
. 0100C00 -.029998874 | —-. 000299980 | -. 000003375
. 0200000 -. 039990999 |—.001199480 | -. 000026990
- 0300000 -. 089969627 | —. 002698380 [ -. 000091048
s, = —3e + 1.125e2
s = —3e2
2
s = -3.375e”
3

stars indicate zero to nine significant digits.
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3& $$§ For e = 1077 s, one can see the linear dependence on
: &

¥ 2. As the eccentricity increases, the square and cubic are
_ﬂ no longer negligible and can be extracted from the data.

& The resulting equation for F(1,1) as a function of both

l‘.

* eccentricity and time is

.

’ "

Y

% F(1,1) = (-3e + 1.125e%) sin t - 3e® sin 2t (4.33)
)

N

W - 3.375e” sin 3t

v

% The rest of the data to determine the coefficients for
'

1

ﬁ: the other elements of E(t) is in Appendix B. The resulting

equations for the rest of the elements of E are as follows:

*3 F(1,2) = 2 + e’ + [-2e + (3/4)e”1 cos t - e’cos 2t
;:'| 3
W, th - (3/4)e cos 3t
o F(1,3) = [1 - 2e + (5/8)e” + .75e’1 sin t

¥

w 2 a . -
Kk + [e - 2" + (1/3)e” 1 sin 2t
i

o + L/8re’ - 2.25¢”1 sin 3t + (4/De’ sin 4t
o 2 3
N F(1,4) = - e + [1 - (9/8)e”1 cos t + [e - (4/3)e”) cos 2t
N
)

o + (9/8)e” cos 3t - (4/3) cos 4t
(X

Yo F(1,5) = F(1,6) =0

N

A 2 a

y F(2,1)" =3 + 1.5e” + (e + 2.25e) cos t

' .

’2 + 7.5e% cos 2t + 9.75e° cos 3t

B F(2 _ 3 . 2 . 3 _.
K F(2,2) = (-e + .38e’) sin t - e” sin 2t - (9/8)e” sin 3t
)

y

"

o

4

A -

1% ’

Ve

3

W

™
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E (2,3) =
! 2
R
4
ic
1
[ F(2,4) =
£, -~
1
! F(2,95) =
)
)
A)
M
“
f F(3,2) =
]
D
) F(3,3) =
R}
o
W
. L
]
» N
&€ e
'I
4
Y
b
A
R F(3,5) =
R ~
A F(4,2) =
ot
]
G F(4,3) =
s
"
¢
K)
': F(4,4) =
. ~
;
l E (4 v S) =
l
%
-~
W
U
Y
)
L]
¥
‘I
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2

2 - 2.5e + e2 - .87e? + (-1 + 4e + 3.875e°

- 1.5e%) cos t + (-1.Se + Se? + 4.16e’) cos 2t

- (2.12e? + s.8e?) cos 3t + 3e? cos 4t

[1 - (3/8)e%]1 sin t + (1.5e - e)) sin 2t

+ 2.215e? sin 3t - 2.96e’ sin 4t

F(2,6) = 0
2 a2 2
-3 + 1.5 + (~3e + 1.875e”) cos t - 3e” cos 2t
- 3.375e? cos 3t
0
-2 + .5e + 2 - .25e” + (2 - 2e -.S5e® + 1.244e”)
cos t + (1.959e -~ Zez - .4e8) cos 2t
2 3
+ (1.5e” - 2.25e”) cos 3t
(-2 + .5e%) sin t + (-1.5e + 1.08e?) sin 2t
- 1.5e2 sin 3t - (5/3e? sin 4t
F(3,6) = F(4,1) = O
2 3 2
-1 + .9 + [~e + (5/8Ye" ] cos t — e” cos 2t
+ (9/8)e? cos 3t
(-1 + (7/8)e%1 sin t + [-e + (7/&e”1 sin 2t
- (9/8)e? sin 3t + (4.3)e? sin 4t
(-1 - (3/8)e2) cos t + [~e - (1/6)e’1 cos 2t
- (9/8)re? cos 3t - (asre? cos at
F(4,6) = F(S5,1) = F(5,2) = F(5,3) = F(5,4) =0
4z
N s A R AR MV A A g
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o ﬁﬁa F(5,5) = -1.5e - 1.5e® - 1.5e” + [1 + e + (5/8)e” + (5/8)e”)

R cos t + (.Se+ .Se’ + .168e”) cos 2t
KX ‘ + (37 e? + (3/8e?1 cos 3t + (1/3)e’ cos 4t
o F(5,6) = [1 - e - (1/8)e? + (1/8)e’1 sin t + (.Se - .Se”
-.165e?) sin 2t + ((3I/@e? - (I/Bre?1 sin 3t
N + (1/3e? sin 4t
KX F(6,1) = F(6,2) = F(6,3) = F(6,4) = 0
F(6,5) = [-1 - e - (S/8)e” - (5/8)e”] sin t
!
k) 2 3 .
"y + (e — e —-(1/3)e” ] sin 2t
P
2 ~e_ 3 . -3 .
§ + (-1.125e” - 1.125e”) sin 3t - 1.35e” sin 4t
0

: - (1/3)ealcos t

F(6,6) =1 - e - (1/8)e” + (1/8)e” + (e - e
b + L(9/8)e? + (9/8)e?] cos 3t + (4/3re? cos 4t

(4.36)

Ry . Since F(t) has been found, finding @(t,0) is now

7 relatively simple. As in the circular solution

- O O

& exp (Jt)

<

2 = 0 O ©
O = O O & O
» O O O O 0O

©C O O O =
o]

o 0 © O O =

-4

n

) Finding the solution for (0) 1is tedious, but

~

relatively simple. It will be a matrix in the form

|
N AR AL L0 |

Py 0 - ' '% - v
’.2‘*50" Lol Dl g .O-

C a® i ™ AT T AT AT e %A TN At tat .
» ‘- ‘\-_ ﬁ.f.__.,.’. ,. sl'.‘_. " e

'l‘.q-‘ --¢.1 Q..' - - - - - - -r
: N IS AT Sy,




A,'..~-
~
i‘é/

XXX . - -

R I

Ll 5

e -

- -

o o 1/b 0 0 o
{(1—f)/c 1 o -g/c 0 0
Eth) = 0 1 —-a/b 0 0 O (4.38)
£ 0 o g 0 0
0 0 0 o 1 0
| o o) 0 0 0 1|
where
a=3/(1 - e?
b=-3C[(1 +e/(1 —-e)1?
c=2 (1 - e
d=-C( + e/ - ei¥?
e = — A/B (from Eq (4.1))
f = —-d/(ec - d)
g = c/(ec — d) (4,.39)

The total solution for ¢(t,0) can now be expressed in terms

of eccentricity cubed by the following matrix multiplication
¢(t,0) = F(t) exp(Jt) ffi(O) (4.40)

Combining Eqs (4.36), (4.37), and (4.38) the homogenous
solution for & = A() % 1is now determined as an expansion

of eccentricity in Eq (4.40).

44

i P AT R "m A Y m et g SR A
‘.,‘ COgN, ol -‘ e AN

B Sak tab "ala AVe AV, ¥y




(ah A aT aiw e S8 ath ail oin-alAV aRadav Yae {ar . av giab gy gaw e > B Bub G’ BBl fa® Sk’ Bob TW Y YUY U YUYV UV UYL

L

- - -

-

gg& FParticular solution

The complete solution for the relative motion is almost

NS

e
-

complete. All that is needed is the particular solution.

. -

Recalling Eq (2.59)

*
K y =dy+ EN) £ct) (4.41)
‘ "
)
Y -1
Since F "(t) f(t) is periodic it was integrated and the
0
% Fourier coefficients were found as done +for F(t). The
‘ ~
N
0 solution for X is then easy to integrate by hand and results

in the following:

Iy vi1) = K + K_ + [-1 + (2/3)e -~ (1/3e® + .5e’1 t

o 1 2

&

R + [(4/3) - (B/3) + (77&6)e” + (1/3e’1 sin t
. .

5 + e - (11/6)e® + .4125e”1 sin 2t

" 2 3 . 3 .

:f + [(9.43)e” —-1.5e 1 sin 3t + e~ sin 4t

!

Dy - K

N Y (2) K,

P (3 = K_+ (-e - .75e®) t + (-2 - 1.75e”) sin t

¥ 3

. + [—(3/2)e - 2/ e’ sin 2t - (17/12)e’sin 3t

.

% - 1.4893 sin 4t

T
Pagy

X = K - (2 - 2.75e%) cos t - [(3/2)e - 2.4125e”) cos 2t

- e -
" -

-~ (17/12)e’cos 3t - 1.48e 2cos 4t

% Y(3) = y6) =0 (4.42)
b
' 9
ﬂ Since the particular solution can be any function that
—._ . .
q #?f satisfies the differential equation, any initial value for y
. o
3
Kt
.
4
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will be valid:; however, y(0) = 0 leads to easier expressians.
This can be done by setting Kka = 0 and
K, =2+ (3/2)e + (4/3)e” + 0.9325¢’ (4.43)

Now y(t) has been found, the particular solution is
x = F(t) y(t) (4_.44)
-\.p ~

where F(t) is expressed in Eq (4.36) and y(t) in Eq(4.42)

Complete solution

Recalling Eq (2.335),

x(t) = ¢(t,0) c + x (4.4%5)
™~ [ ﬂ.ap
however, since Z(O) = Q
c = (4.46)
~ Nco

and Eq (4.45) can be written
x(t) = ¢(t,0) x_ + x (4.47)
where Q(t,O) is expressed in Eq (4.40), %o in Eq (3.23), and

xp in Eq (4.44)
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Conclusion

Using the expressions derived in this chapter, the
solution to the equations of motion can be expressed as a
function of eccentricity and time. The results reduce to
the circular solution, but the actual equations for the

elliptical solution are rather complicated to write out in

an expanded form.
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&Qﬁ V. Conclusion

An expression for the solution to the relative motion

: problem has been found. Although this solution is limited
to small eccentricities (the error is approximately ea), it
has wide applications. It could be applied to traffic
management around the space station, Shuttle activities, or
any other application that utilizes orbits of small
eccentricities.

These equations of motion are an improvement over
previous methods. They are not limited to body A being in a

circular orbit as in some previous studies. The results are

I valid even at very close distances, which is a weakness of
y the methods based on subtracting the two position vectors.

This analysis alsoc has the advantage of being able to

calculate the necessary changes in velocity for rendezvous.

If we recall the basic solution to the equation of motion

e S e A0

x(t) = ¢(t,0) %o + (5.1)

»
~p
The values of gt,0), % , and x  have previously been found.
~o ~p
For the rendezvous problem, the initial and final times are
known. Also, the initial position is known, and the final
. position is simply zero for the three different directions.
The only values that are not known are the initial and

final velocities. This results in a system of six

)
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8@% equations and sixx unknowns. These are not difficult to
solve since all the other values are constants.
One difficulty in using this solution occurs when the
\ desired initial time is not at perigee, but at some time, to.

This problem can be overcome by using the fact that
gt,0) = Q(t,to) Q(to,O) (5.2)

Finding the required solution, therefore, requires solving
Eq (5.2).

There are two limitations to this solution. The first
is that the relative distances between the two bodies must
be small. The second limitation is that the solution is for

o small eccentricities. Equations for greater eccentricities

‘f% can be found using the same approach as this thesis. This
could be done with the same computer code, finding the
dependence on higher orders of eccentricity.

Utilization of these equations yield themselves best to
computer analysis since they are relatively lengthy
expressions. The equations being somewhat unwieldy are only

a minor inconvenience. One must remember, however, that the

. equations are in canonical units.
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Appendix A: Explanation of Computer Cocde

Introduction

This appendix is meant to describe the code that was
used for this thesis. Hopefully, this will make it easier

to understand the numerical processes used.

Computer Code

The main programs were relatively simple. Their
purpose was to initialize some of the parameters, mainly
eccentricity, and call the numerical integrator. There were
actually three main praograms. The first integrated the ¢
matrix over one orbit and its output was just #(T,0). The
second integrated the ﬁ matrix over one period and its
output was the values of the F matrix for fifty evenly
spaced time intervals over one periad. The last integrated
Ed over one period and the output was fifty evenly spaced
values of ET‘ £(t), where f(t) is the forcing function.

The numeric integrator that was used was Haming. It is
a fourth order predictor-corrector capable of integrating
systems of first order differential equations. Using it

entails forming a subroutine called '"rhs," where rhs

calculates the right hand side of the equations of motion.

S0
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ﬁé& The position of body A was necessary in the subroutine

rhs, so it was calculated using a Newton-Raphson method to
0 find Kepler ‘s equation.
R The fourier coefficients were found using the approach

defined in chapter 2.
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Appendix B:

Data Frqm Harmonic Analyses

Table R.1
Fourier Coefficients for F(1,2)
e c [ c c
o 1 2 a
. 0000001 2.00000000 | -. 000000200 * *
. 0000010 2.00000000 | -. 000002000 * *
. 0000100 2.00000000 | —. 000020000 * *
. 0001000 2.00000001 | —. 000200000 | -. 000000010 *
« 0005000 2.00000025 | -.001000000 | —. 000000250 *
- 0008000 2.00000064 | —. 001600000 | —. AO0000640 *
. 0010000 2.00000100 | —-. 002000000 | -. 000001000 *
. 0050000 2.00002500 | —. 009999906 | —. Q00025000 | -. Q00000094
- 0080000 2.00006400 | -.015999616 | -. 000063997 | —. 000000384
- 0100000 2.00010000}-.019999249 | -. 000099994 | —. 000000750
. 0200000 2.00040000 |-. 0379994000 | —. 00039279894 | —. 000005998
. 0300000 2.00090000 |—-.059979751 | -. 0008972460 | —. 000020233
c =2 + e’
o
c, = -2e + (3/4re”
2
c = -e
2 :
c = =-(3/4)e
3
Table B.2
Fourier Coefficients for F(1,3)
e s s s s
1 2 ) 4
- 0000001 . 999999800 .000000010 * »
« 0000010 . 999998000 | .000000100 * *
. 0000100 « 999980000 | .000001000 » *
. 0001000 . 999800006 | .000099980{( .000000011 *
. 0003000 . 999000016 | .000499500] .000000281 *
. 0008000 . 998400400 .000798720| .00Q0000719 *
. 0010000 « 998000626 | .000998000} .000001123] .000000001
. 0050000 . 9900135719 .004950042] .000027844 | .0000001465
. 0080000 . 984040383 .0078721746] .000070848| .000000672
. 0100000 . 9800463246 .009800347| .000110251 | .000001307
. 0200000 . 960255944 .019202878| .000432018| .000010239
. 0300000 . 94038244646 .028210067| .000931838| .000033836
s, =1~ 2+ (5/8) e + (I/are’
52 = e - 2e2 + (1/3)es
s, = (/8e® - 2.25 &’
s = (a/%e”
4
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@ Table B.4

Fourier Coefficient for F(2,1)

e c [ c c

1) 1 2 a
. 0000001 3.000000001 .000000&0 * *
| . 0000010 3.00000000] .0Q0000&00 * *
) . 0000100 3.00000000| .0000&000 * *
. 0001000 3.00000002| .00060000| .00Q000Q0075 *

- 0005000 3.00000038] .00300000| .000001875| .000000001
- 0008000 3.00000096) .00480000| .000004800| .0000000035
: . 0010000 3.00000150| .00600000) .000007500} .00000Q0010
1 - 00350000 3.00003750| .03000028| .000187300| .000001219
¢ . 0080000 3.00009600| .04800115 .000480004| .000004992
. 0100000 3.00015001 ] .0600022 -0007350010] .000009750
? -« 0200000 3.00060018} .12001800] .003000160| .000077996
. 0300000 3.00135091| .18006080| .006750811| .000263222

! c =3+ 1.5e%
y o]
: c, = 6e + 2.25 e?
K c = 7.592
! 2 .
c = 9.75e
[} 3
3
3
3 AN
<
X Table B.S
: Faurier Coefficients for F(2,2)
! e = s S
. 1 2 3
. 0000001 |-.000000100 * *
' .0000010 |-.000001000 * *
! .0000100 {—-.000010000 * *
.0001000 |-.000100000 {-.000000010 *
‘ .0005000 |—.000500000 |-.000000250 *
¢ .0008000 |-.000800000 |-.000000640 *
; .0010000 |-.001000000 |-.000001000 |~.000000001
; .0050000 |-.004999953|-.000025000 |~.000000141
y .0080000 |-.007999808|-.000063997 |-. 000000576
N .0100000 |-.009999420|-.000099992 |-.000001124
A . 0200000 |-.019996997 |-.000399894 |-. 000008997
.0300000 |-.029989877 |-.0008994&1 |~. 000030350

5 = —e + ,38e
. 1
_ 2
s = —-e
2 3
¥
\ s = -1.125e
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Table B.7
Fourier Coefficient faor F(2,4)
e S 1=3 S S
o) 1 2 h: |
. 0000001 |[1.000000000| .000000150 * *
. 0000010 1.00000000Q | .000001300 * *
- 0000100 1. 000000000 » 000030000 * *
. 0001000 « 9999999946 | .0001350000] .000000021 *
. 0003000 . 999999906 « 000730000 - QOO000531 *
- 0008000 « 99999760 . 001200000 « 000001360 « 000000002
- 0010000 . 799999625 . Q01499999 . 000002125 - Q00000003
« 0030000 « 999990625 .00749988S5 . Q00053129 « Q00000370
« 0080000 « 999976000 . 011999531 . 000135993 < QQO0001515
- 0100000 « 999962500 . 014999084 . 000212482 - 000002958
« 0200000 « 999849996 . 0299924646 . 000849711 000023636
« 0300000 . 999662488 .044973252 . 001911039 . Q00079808
s, = 1- .375e”
s = 1.5e - es
2
s, = 2.125e?
s = 2.96e’
4
Table B.8
Fourier Coefficient for F(3,1)
e c c c c
o 1 2 3
« 0000001 -3.00000000 | -. 000000300 * *
. 0000010 |-3.000000001 -, 000003000 * *
. 0000100 |-3.00000000 | ~-.000030000 * *
. 0001000 [|-2.99999999|-.000300000 |-.000000030 *
. 0003000 |-2.99999963|-.001300C00 |—. 000000730 *
. 0008000 |—-2.99999904]|-.002400000|~.0000019220{-.000000002
0010000 | -2.99999850|-.002999998 | —. 000003000 |-, 000000003
. 0050000 |—-2.99996250|-.0149997661—-.000074998 | —-.000000422
. 0080000 [—-2.99990400]|-.0239992040|-.000191990{-.000001728
. 0100000 |-2.99983000|-.029998124|—-.000299975|-.00000337S
. 0200000 [|-2.99939994|-.0599849946|-.001199600 |—-.000026989
« 0300000 |-2.99864970(-.089949371}|-.0026979735 | —. 000091037
c = -3 + 1.5e%
o]
C1 = -3e +1.875e9
c = —392
2
c = -3.375e’
3
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Table B.10

Fourier Coefficient for F(3,4)

S aa0 Ral Al pat Al

«
S Mt M ~ )

N S

A N A A

e S s s =)
1 2 a 4
. 0000001 |-2.00000000|-.000000150 * *
0000010 |-2.00000000 |-.000001500 * *
. 0000100 [-2.00000000 |-.000015000 * *
- 0001000 |—-2.00000000 |—-,000130000 |-.000000015 *
. 0005000 |—-1.99999988/|—-.000750000 | —-. 000000375 *
0008000 |—-1.99999968|-.001199999 | -. 000000960 *
«001Q000 [-1.99999930|-.001499999 |-, 000Q01500 | ~. 000000G0Z
- 0050000 [—-1.999987350{-.007499865 |~. 000037499 {—-.000000208
. Q080000 |-1.999926800]|-.011999445 | —. 000093993 | —. 000000853
.0100000 |-1,99993000]|-.014998917|-.000149984 | -. 000001667
. 0200000 |-1.99980006 |—.029991334 |-.000599737 |-.000013326
« 0300000 |-1.99995033[|-.044970761 |-.001348672 |-.0000449473
=2+ .5e’
s, = -1.5e + 1.08e”
s = —l.Se2
3
s = —(5/3e’
4
Table B. 11
Fourier Coefficient for F(4,2)
e c c (< c
o 1 2 3
- 0000001 |-1.00000000 |-.000000100 * *
. 0000010 |-1.00000000{-.000001000 * *
«. 0000100 j-1.00000000{~-.000010000 * *
0001000 |-0.999999992|—.0Q0100000]|-.00000Q00010 *
. 0005000 }—-0.99999988 )] —.000500000 | -.000000230 *
. 0008000 |—-0.99999968/|—.000800000 |—-. 000000640 *
0010000 }|-0.99999950]-.000999999 |-. 000001000 | -. 000000001
. 0050000 |-0.99998730 |—.004999922 |-.000024999 |—. 000000141
. 0080000 |-0,.999946800|—-.0079992480 | —-. 0000463997 |—-. 000000576
« 0100000 |-0.99995000 | —-.0099993746 | -. 000099991 |—-. 000001125
. 0200000 |-0.999799981-.01929925000 |-.000399866 | —. 0000089946
. 0300000 |-0.99954990|—.029983123|—.0008992325|—-.0000303446
c = -1+ .5e°
]
c’ = —-e + .b25e8
c = -e’
2
c = 1.125e?
3
58
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Table B.12

N r B vl g,

Fourier Coefficient for F(4,3)

e S S s s
": 1 2 3 4
Y .0000001 |—1.00000000 |—.000000100 * *
s . 0000010 |-1.00000000 |-.000001000 * »
i .0000100 |-1.00000000 |-.000010000 * *
b .0001000 |-0.99999999|—-.000100000 |-. 00000001 1 *
. .000S000 |-0.99999978|-. 000500000 |-. 000000281 *
5 . 0008000 |-0.99999944 |-, 000799999 | ~. 000000720 *
» .0010000 [-0.99999913 |-. 000999999 |-. 000001125 | -. 00000OGOO1
o . 0050000 |-0.99997813 |-.004999854 |~. 000028124 | —. 000000167
b . 0080000 |-0.99994400|-.007999403 {~. 000071993 | —. 000000683
' .0100000 |-0.99991250 |-.009998833 |~. 000112484 |-. 000001333
" . 0200000 |-0.99965001 |-, 019990668 |-. 000449741 | —. 000010659
A . 0300000 |-0.99921257 |-.029968508 |-.001011191 |-. 000035945
" s, = -1+ .875e2
N s, = -e+ (7/6)e2
: s, = —(/dre’
s s = (4a/3e’
4
'\
l‘ LY
®
' Table B.13
Q Fourier Coefficient for F(4,4)
:’ e [ =g Cc [ C
Y 1 2 3 4
- . 0000001 |-1.00000000|~-.000000100 * »
o .0000010 |-1.00000000|-.000001000 * *
3 .0000100 |-1.00000000 |-.000010000 * *
2 .0001000 |~-1.00000000 |-.000100000 |-.00000001 1 *
b .000S000 [—-1.00000009 |-.000500000 |-.000000281 *
N . 0008000 |-1.00000024 |-.000800000 |-.000000720 *
X .0010000 [-1.00000037 {—-.001000000 |-.000001125|-.000000001
W .0050000 |—-1.00000938|-.005000020|-.000028125 |-.000000167
: . 0080000 |-1.00002400 |-.008000085 |-. 000072000 | -. 000000683
* .0100000 |-1.00003750|-.010000167|-.000112499 {-.000001333
' .0200000 |-1.00015005|-.020001334 |-.000449989 |-.000010665
W .0300000 |-1.00033776|-.030004506 |-.001012443 |-. 000035990
= c, =-t - (3/8)e?
" c, = -e - (1/&)e”
¥
3 c = —(9/8)e?
X 8 )
" c = -(4/De
- 4
NS
SR
[
"
o
-~
W
R
D R T TR A R S e o ¢ N A A N S O S

R S A A O A AT A AT T




2(s/1) = 2
€
2(B/5) + _3(B/D)= ~u
(891" + ,35°+ ag- = “u
2(B/S) + _3(B/S) + @ + 1 = O
(o]
¢2S°1 - ,96°1 - ag-1- = '3
BPZ600000° |SHILYSO00 ™ | T¥OVSHSTIO™ [Z66L50£0°T [£SL1659¥0°-] 0000050 "
0ZLZO0000 " |#00ELSTO00" |09€T10ZOTO" [ TIGEZOZOT |SvZZI9050°—~]| 0000020 "
LESO00000° [G£8L£0000° [B91050500° |[z££90010°1 [ZSISISIST -] 0000010
ZL1000000° |Z6THZO000 " |9BOZEOK00" |ZSOH0BOO T |4Z2/960Z10°-| 0000800
ZYO000000 " |ZZb600000° | 1ZGZISZ00° |04810500°1 |B8B9L56200°-| 0000500 "
* G/L£000000 " |00800S000° |£9000T00°1 |ZOSTOSTIOO —| 0000100 "
» 0bZ000000 " |0ZE00K000" |{0+00B8000°T | 196002100 -] 0008000 "
* 60000000 |SZT106Z000" 910080001 |SZ£0SZ000°-| 0OOSO00*
* 00000000 * | G00050000° | TO0OTI000 T |SI0OSTO00 —| 0001000 "
» » 000500000 " |DOOTO000"T {000ST0000 - 00T0000"
* * 005000000 " |00T00000°T |[00STO0000°~| OT00000"
* * 0S0000000° [0T000000°T |[0STOCO000°—| 1000000 "
1 4 € Z ¥ o]
pm | 2 s | po | pu J -]

(§°CG)4 403 JUBTDIT133380) 42T1.N04

t1°d 219¢)

60




L a me

a -
;. E B,

-

2=,

4
s"
W,

Table B.15

Fourier Coefficient for F(5,6)

e

S
1

S
2

n

.0000001 | .999999900]| .000000050 * *
.0000010 | .999999000| .000000S00 * *
. 0000100 | .999990000| .00000S000 * *
.0001000 | .999899999| .000049995| .000000004 *
. 0005000 | .999499969| .00024987S| .000000094 *
.0008000 | .999199920| .000399680| .000000240 *
.0010000 | .998999875| .000499500| .000000375 *
. 0050000 | .994996891| .002487479| .000009328| .000000041
.0080000 | .991992064| .003967915| .000023807| .000000169
.0100000 | .989987625| .004949835| .000037123| .0000003I0
.0200000 | .979951001| .009798693| .000146967| .000002612
.0300000 | .969890879| .014545635| .000327209| .000008724
s, =1-e- a/@e’ + asae’
s, = .Se ~ .S5e’ -.165e”
s, = (3/8ve® - Grsare’
s = (1/3e’
4
Table B.16
Fourier Coefficient for F(6,5)
a2 s s S s
1 2 9 4
. 0000001 |-1.00000010 |-.000000100 * *
. 0000010 |-1.00000100 |-. 000001000 * *
.0000100 |-1.00001000|-.000010000 * *
.0001000 |-1.00010001 |-.000100010 {—. 00000001 1 »
. 0005000 |-1.00050016 |-.000500250 |-.000000281 %
. 0008000 |-1.00080040 |-.000800640 |-.000000721 *
.0010000 |-1.00100063|-.001001000|-.000001126 |—-.000000001
. 0050000 |-1.00501570]-.005025042 |-. 000028266 |-. 000000167
. 0080000 |-1.00804032[-.008064172{-.000072576 |-.000000688
.0100000 [-1.01006313{-.010100337|-.000113626 |-.000001347
.0200000 |-1.02025511 |~-.020402721 |-.000459011 |-.000010879
. 0300000 |-1.03057992|-.030909281 [-.001042934 |-. 000037073
, = "1-e~- s/me’ - srare’

s, = -e - e - (1/3»e’?
s, = —(/are’ - (rare’
s = —(a/3)e’

61

RN NN AU AT N

------

ol

LA A
L AL S SRR LG




Table B.17

Fourier Coefficient for F(6,6)

Cd = 2 =

e [ C [ =d C

[ 2 3 4
. 0000001 . 999999900 | .000000100 » *
.0000010 | .999999000| .000001000 * *
.0000100 | .999990000| .000010000 * *
.0001000 | .999899999| .000099990| .000000011 »
. 0005000 | .999499949| .000499750| .000000281 *
.0010000 | .998999875| .000899000| .000001124| .000000001
.0050000 | .994996890!| .004974959| .000027984| .C00000166
.0080000 | .991992064| .007935831| .000071421| .000000677
.0100000 | .989987625| .009899670| .000111369] .000001320
.0200000 | .979951001| .019597387| .000440901| .000010450
.0300000 | .969890879| .029091271| .000981628]| .00003489S
c, =1-e- asme* + asae’
c2 = e - ez - (1/3)e8
c, = (9/8)e? + (9s8)e”
c = (ar3e’
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€ v = c
25 - 88872 = «u
2(B/L) + 3(L/1T) - BZ = 2

¥
e2(E/T) + . B(F/L) + a(g/8) — (£/v) = 3

o
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Table B.Z20

Fourier Coefficient for vy(4)

; e 51 Sz Ss S‘

)

0 . 0000001 | 2.00000000] .000000300 * *

o .0000010 | 2.00000000| .000003000 * *

E .0000100 | 2.00000000| .000030000 % *

. .0001000 | 1.99999997| .000300000| .000000042 *

'y . 0005000 | 1.99999931| .001499999| .0000010&62 *

2 .0008000 | 1.99999824| .002399998| .000002720| .000000003
i .0010000 | 1.99999725| .002999995| .000004250| .000000006
. .0050000 | 1.99993125| .014999394| .000106245| .000000740
‘ .0080000 | 1.99982400| .023997525! .000271968| .000003029
N .0100000 | 1.99972501| .029995167| .000424921| .00000591S
b .0200000 | 1.99890012| .059961340| .001698743| .000047294
0 .0300000 | 1.99752558| .089869549| .0038184637| .000159449
]
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